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Analysis of Propagating Explosions

Lamy B. Luck, Ph. D.

Stephen W, Eisenhawer, Ph. D.

Terrence F. Boft, Ph. D,

Los Alamos National Laboratory. Los Alamos, New Mexico

Abstract

Weapons are often in close proximity to one another during transport or storage. if one
weapon explodes, there is a possibility that the fragments generated will initiate a sub-
sequent explosion in one or more neighboring weapons. Propagating explosions of this
sort have the potential for severe consequences either because of the total amount of
explosives that react or because the response of individual weapons may be particularly
energetic. In this paper, we consider a weli-defined problem in which the nature of the
progression to all possible end states can be studied. We wish to determine the
expected number of weapons to datonate along with other useful quantities. We exa-
mine the possible end states that the system can reach and show thal we can represent
the propagation process as a series of discrate time transitions. Tha transition proba-
bilites from one state to the next then will depend only on the present state of the system.
We present results of simulations that lilustrato the offect of varying the detonation prob-
abilty parameters .

Introduction

Weapons containing significant quantities of high explosives (HC) are sometimes
locatod in closa proximity to ono anothor. {f an oxplosion ocours in a woapon, the possi-
bility of propagation to one or more additional weapons may exist, with severe consge-
quences possibly resulting. In the general case, a system of concern contists of multi-
ple weapons and various other objects in a complex, three-dimensional geomatry
Analysis of this problem requires an approach that can both defing the circumstances
under which rure events can occur and calculate the probability of such occurrences. Wa
havo dovolopod such an approach based on combilning process-troy mothodology with
Monte Carlo trunsport simulation and described it elsewhare (Ref. 1)  In this work, we
axtond these idocas to onablo tho investgation of probloms creatad hy the possibility of
tealizing cettain  low=probabllily, chainsreaction sequences of oxplosions Such
soquonces may contain individual undosirod ovents made possible by the special envi
ronment ¢reated during the axplosion seguence or shinply by the collective output of a
long axplosion chain,



Our approach is based on characterizing the accident progression by using damage-
state vectors. These vectors describe the system state completely, including path
information, and are equally useful for both temporary states and the final end states. We
investigated a problem involving a collection of re-entry vehicles (RVs) surrounding a
solid rocket motor (SRM). This problem has the unusual feature of a terminating
mechanism (the possibility that the SRM could explode, thus artificially ending any
propagating chains in progress) and the fact that no siate of the system can be entered
more than once.

in this paper, we define this problem further, explain our technique for mathematically
characterizing the accident progression by mesns of damage-stata vectors, and investi-
gate the mathematical properties of Markov techniques that apply to the problem at hand.
Several features of our problem are unusual, so much of the extensive body of Markov-
related work avallable in the literature does not apply directly. We outline the numerical
simulation mode! developed and show results for an interesting set of problom
parameters. Prospects for extension of the approach and generalization of application
problems are considered.

Scenario

The mode! geometry consists of a ring of n RVs surrounding a solid fuel rocket motor as
shown in Figure 1 for the case n = 8. One of the RVs, referred to here as the donor, is
assumead to detonate and Is the original source for the fragments of concamn. Other RVs
are in the line of sight of the donor. We refer to the two closest units as adjucent accep-
tors tAA1  1tis assumed that fragments from the donor ara distributed equally about a
ine of symmetry drawn through the centers of the donor and the SRM. Therefore. the left
and nght acceptors see the same fragment flux (n the general case, it is also possible
for fruaments to reach additionsl RVs. Here we consider thal only the next two RVs
beyond the AAs are in the direct fragment path from the donor. We denote these units as
next adieont accoptors (NAAs),
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Figure 1 - Baslc accidont modal showing ona pousible propagation scenario,



Fragments from the donor can cause a subsequent detonation in AAs or NAAs or in the
SRM. This makes a sequence of RV detonations possibic, a chain reaction. To make
the problem more tractable, we have made two simplifying assumptions: the chain reac-
tion can be represented as a set of discrete generatiors at uniform intervals and,
because the RVs are identical. detonation of any acceptor actls as a new donor in the next
generation. In the problem examined here, it is assumed that detonation of the SRM
terminates the sequence. That is, only acceptors that are impacted by fragments from
the original or subsequent donors before or simultaneously with SRM detonation can
detonate as the result of an RV fragment.

The evolution of two potential chain reactions is shown in Figure 2. In the first generation,
the original donor (Object 2) detonates. In the upper chain, fragments from the donor
lead to daughter detonatiocns in the AAs denoted by Object 3 and 8. Fragments from
these datonations in turn produce datonations in their own AAs—Objects 4 and 8—as
well as in the SRM, Object 1. This terminates the sequence with a total of four RvVs
datonated. In the lower chain, the original donor causes a detonation in an NAA, Object
4. in the third generation, this daughter donor causes both of its AAs as well as the SRM
to detonate, again ending the sequence. It can be seen that many other detonation
chains are possible, and we consider next a general methodology for enumerating the
complete set of end states and the probabllity assoclated with each.

Theory

The avolution of a chain ot RV detonations depends on three probabililies. Thase ara the
prabability of detonation for an adjacont accoptor, paa: for a next adjacent acceptor, pnaa.
and for the SRM, psrm. In general, these probabilities depend on the fragment genera-
tion process. the transport of the fragments to the acceptors and SRM, and the recponse
of tne anergetic material (HE or propellant) in the target. The development of a sat of
models o calculate the component probabilities is beyond the scope of this paper and is
discussod elnowhare (Ref. 1) Horo wo traat the throe probabliities as paramaetors and
evuluale the response of the system accordingly,

If psr i less than 1.0, a chain of RV detonations becomes possible. Various end
status, that Is, pallerns of exploded and unexploded RVs, oxist. These end states
depend on thoe rolative magnitudes of paa and pnaa. Any particular ond state may be
taached by multiple puths. For example, axplosions in Objucty 3 and 4 may occur directly
In gonaration 2 as a rasult of fragments trom thae original donor, or Objoct 4 may be
doetonated in generation 3 by u frugment from Objuct 3. Thug, to culculate the total
praobablity of detonating | 11V4, 1 74 4 n, we must calculate the probability of occurrance
for all poasiblo paths,

Evon for small n, a large numbur of formal probabllities exist, und L 18 necessary to use
some symbaolic schama to keap track of tha paths. Wa have choson to uso an n-.tuple
iduntification suquence to track thu system damage veotor. Thiy trucking lv 1equired to



2nd Generation 3'd Generation

w2 w2
18! Generation @@ __’®®®
/,@ ® ® @ ® ®
® X

o m@’o_»

OB
@—-——-*O X )%
@) ) 3

-

Figure 2 - Basic accident model showing possible propugation scenanos,

calculate the transition probabilities balween damage stites. Tha scheameé is shown in
Figure 3 for n = 8. Euch RV has a unique position in the octuple that coresponds 1o its
numerical idantification, tha SRM has the laad pogition in the octuple. An ohjact is
reprasunted by u zoro If it is undetonated. If un object dotonates in some goneration, the
zero Is raplaced by the numbar of the gonaration in which the axplosion in that object
occurred For example, all chaing begin in the first generation as [010000000] with the
dutonation of tha original donor A parliculiae state in tha sacond ganaration nught ba tha
dotonation of u gingle NAA, which would by dusignated as [010200000]. Then pachaps
i the third ganaration, the SRM, a8 wall as both the adjacant accaptors for Objoct 4
axplodo. This ulute, which iu un und vlute bocuuse of the SRM explosion, would be

(415230000}
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Figure 3 - ldentification of damage-state vector for muitiple generations of propagation
scenarios.

it is important to note that for any formally possible n-tuple of generation j, n, we can list
the transitions to all poseible damage-state vectors in generation j+1. Further, because
we kKnow the transition probabllities assoclated with the three fundamental events, deto-
nation of AAs, NAAs and the SRM, we can caiculate the probability for each posaible state
in generation j+1 given the value of n. The fact that the transilion from a state in genera-
tion } s, to some state in generation j+1, s,y only depends on the vaiue of n, and no pre-
viaus state means that the detonation sequence is a Markov chain., We discuss the
implications of this in the next saction.

Markov Ghains

The model of propagation generated in this analysis ls a Markov chain with nonstationary
transition probabilities (Ref. 2). The model is a Markov chain becausa the conditional
probability p, that state | is reached from state | is independent of the path to state |. This
is statad mathematically by

XK Ko Kig, ooy Xe} ey

The slate space for the chain is (he set of different combinations of exploded and unex-
plodad RV6 in combination with tho SRM stato. Each stato has at most 32 acceasible
yluley ussociated with it because vuch exploding RV cun be the donor tor only four other
RVs und tho SRM. Transitiony in tha Markov chain roprasent changes betwoon statas
cuused by fragmants from un exploded RV striking an unexploded RV or the SIRM.  All
axplosions and fragment transport aro assumad to take place within ono goneration,



The transition probabilities are nonstationary because they depend on the number of
generations since explosion of an RV. In the basic model, no state can transition to
another state after it has existed for more than one generation. This represents the case
whare fragments generated by an explosion in one generation do not cause an explosion
in any other object. Thus, the p, for a state has a nonzero vaiue only in the generation
immediately following a transition to that state.

in an extension of the model that allows for the treatment of deflagration-to-detonation
transition, an incubation period of a set number of generations is allowed before an
odject explodes. This extension allows for the possibility of detonation delay in an object.
With this extension, wansitions may occur during a set number of generations after an
object has exploded. The chain is still Markov even with this extension because the
transition probabilities remain path-independent.

This Markov chain has no commaunicating states. Each state has a set of accessible
states, but a state cannot be entered more than once, 8o the chain is a special form of a
branching chain. Another unusual feature of this chain is the terminating feature of the
SRM explosion. No state transitions occour after an SRM explosion, so all the staies with
SRM axplosion (a non-zero value in the leading position of the state vector) are terminal
slates,

The advantage to using the Markov chain model is realized in the probability calculations.
A large . mber of possible states may be enumerated, and the probability of each may
be calculated exactly using this chain model. The chain model s, of course, an idealiza-
tian of the actual situation, but many insights may be gained Into the process using this
olatively sunple model. It provides a straightforward way of illustrating the proliferation of
possible states and shows the effects of changing relative probabilities among the com-
municating elements of the model.

Simulation Model

The simulation model is based on a simple approach. There is only one boginning
slate. A donor is assumed to explode; the results are independent of which of the RVs is
choson. The accidont simulation proceeds ag the accident does, that {s, ganeration by
generation Often diffarent outcomes are possible, for example, an accaptor may expiode
as a rosult of fragment impacts or it may not. Cach generation may have a numbor of
possible outcomes. Each possible outcome is racorded as a distinct possible damage
state and than usod as a starting point for tho noxt goneration calculation: evantually alt
tealizable end slales are identified.

This approach can be implemented with either a rucursive or a nontecursive algorithe
In both casoes. a program und to advance the accidont state one generation 15 noedod.
This unit must examine 8 damuage vector (o determine if it represents an end state i not,
it idontifios all tha poasibllities for the noxt genoration and tholr associatod probabilities.
If the algorithm le recursive | simply “calls itsell” for euch of the damage-state possibili-
tlos for tha now gonoration. If the algorithm {6 nonrocursive, all the new damage-stato



possibilities are added «© a stack. The current state is always retained as one possible
end state if one of the possible outcomes is that nothing happens. The recursive algo-
rithm is finished when there are no additional damage states possible. The nonrecur-
sive algorithm is finished when the stack is exhausted. Because diffarent paths can lead
to the same end state, post-processing is necessary to condense duplicate end states.
In addition, it is convenient to collapse symmetric states; for example, {212000000]) and
[210000002] are considered equivalent, so their probabilities are summed and both
states are reprasented as [212000000].

It is necessary to identify each possibie next state as well as its probability to advance the
accident state one generation. To obtain the possible next states, each unexploded
acceptor le considered to determine If it can be an AA or NAA for some donor. The total
numbers of donors for which it is an AA or an NAA are recorded separately for later use in
computing probabllities. An axample of this process is shown in Figure 4. All the
possible next states are generated by iooping over the permutations of possibilities for
each acceptor to be an AA or NAA.

The probabilities corrusponding to each of the possible next states are computed from
factors multiplying the current state probabillity. There will be a multiplying factor for each
possible acceptor. This factor is divided further into contributions from donors to AA
positions and a contribution from donors to NAA positions. Although & is conceptually
simple. formulation of the next state probabilities is complicated and tedious because
every possibilitr for each potential acceptor must be considered. However, it is easy to
illustratc the basic concepts for a simple case.

Consider the probabilities for the transition from generation 2 to generation 3 in Figure 4.
Only four next states are possible because only one acceptor and the SRM remain
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Figuro 4 - Simplified Hllustration of the transition probability calculation



unexploded. To further simplify the lllustration, let us ignore the complexity introduced by
the SRM; then only two next states are possible. Those correspond to object 6 exploding
or not exploding: that is, the possibie end states are [012334332) and [012330332]. The
conditional probability of Object 6 not exploding is given by

p.=(1 - paa¥ (1 - pnaaF .

Therefore, the probability of end state [012330332}, where Object 6 does not detonate, is
given by the probability of the current state times p,. The probability of the remaining end
state, [012334332), is given by 1—the previous resuit.

Simulation Results

The simulation model will work for any values of paa, Puaa, 8Nd pspu. Hiustrative results
are discussed below for n = 8 with arbitrary and large detonation probabilities. in this
case, paa = 0.95, puaa = 0.90, and psau = 0.95. Table 1 shows the 20 highest probability
end states obtained. The total number of distinct end states possible is quite large; in
this case. it is 10,960.

Tatle 1 - Highest Probability End States for the lilustration Problom

index End state Probabiiity Cumulative
Probability
1 212000002 0.857375 0.857375
2 212000000 0.090250 0.947825
3 312230322 0.032987 0.080612
4 312230032 0.007330 0.987942
5 312230022 0.003472 0.991414
6 312230323 0.003296 0.994713
7 210000000 0.002375 0.897088
8 312300032 0.000406 0.897404
9 312230000 0.000405 0.897899
10 312200032 0.000386 0.998285
11 312230002 0.000386 1,998670
12 312300323 0.000366 0.999036
13 312230023 0000174 0.999210
14 312200323 0.000174 0.999383
15 312230320 0.000174 0.989557
16 312200022 0.000001 0.999648
17 313230323 0 000082 0.999730
18 312300000 0.000043 0.099773
19 312300002 0.000043 0.999416
20 312200000 0.000021 0.998837 §




We chose this example because we wanted to know the likelihood of a long chain reac-
tion of RV detonations in scenarios where the probability that the SRM would explode and
terminate the chain is relatively high. The most likely end state is detonation of the two
AAs and the SRM. This has a probability p = 0.85. However, the third most probable end
state involves the detonation of seven RVs as well as the SRM. Detonation of only the
original donor and the SRM alone is only the seventh most likely state in spite of the high
probability of SRM detonation. It is interesting to note that the probability of realizing
some long chain reactions is around a few per cent, which was considered to be rathei
large for the purposes of our study. To investigate this feature further, we collapsed the
end states to summarize the results in tenms of the total number of RVs detonated as
shown in Table 2. The end states that are symmetric, i = 3, 5, 7 RVs detonated, are more
likely than states just praceding them, i = 2, 4, 6. Note also that there is a large drop afte
i = 3 with the next most likely value being i = 7. These features arise from the fact thaf
both paa and pnag are large, which makes the transitions from i = 3 to i = 4, 5, 6 relatively
unlikely to occur. The increase in detonation probability from i = 4 to i = 6 reflects the
relative difficulty of these transitions. Detonation of all eight RVs is always a low-
probability event.

To continue our exploration along these lines, we next investigated how the expectec
number of RVs detonated varles with pspw. These results are plotted in Figure 5; note
that the values of pas and puaa Were changed slightly from the preceding examples, as
shown in the plot. It can be seen that even for relatively large values of psm. the expectec
number of RVs detonated is appreciably larger than three,

Conclusions
Tne Markov chain mode! described here is an effective tool for exploring the behavior o

propagating explosions. It provides a convenlent structure to make the problem tractable
anc to simplify the numerical effort associated with obtaining an exact solution for enc

Table 2 - Summary Probabilities for the lllustration Problem

Number of Daetonated RVe | Probabllity
{including the first donor)

0.0024
0.0803
0.8574
0.0005
0.0014
0.0117
0.0364
0.0000
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Figure 5 — Expected number of detonated RVs as a function of psaum for a slightly modified
iltlustration problem.

states with low probabilities of occurrence. One of the insights gained from the chain
mode! i1s the mere existence of so many states from such a simple problem. Some of
the numerical results obtained were interesting and somewhat surprising. These
include the high likelihood for the end state with seven RVs detonated and the increase
in hikeithood between four and seven detonations. The relatively weak power of SRM
detonation probability in limiling the chain reaclion is also of practical significance. In the
future we plan to continue development of the mode!l. Specific issues yet to be examined
are the effect of delayed detonations, the effect of changing the number of RVs, and a
more detailed study of the relationship between the component detonation probabilitics.
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